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Abstract
A common assumption of stereo vision researchers is that, the goal of stereo is to compute explicit 3D
information about a scene, to support activities such as navigation, hand-eye coordination and object
recognition. This paper suggests reconsidering what, is required of a stereo algorithm, in light of the needs
of the task that uses its output. We show that very accurate camera calibration is needed to reconstruct
accurate 3D distances, and argue that often it. may be difficult to attain and maintain such accuracy. We
further argue that for tasks such as object recognition, separating object from background is of central
importance. We suggest, that, stereo can help with this task, without explicitly computing 3D information.
We provide a demonstration of a stereo algorithm that supports separating figure from ground through
attentive fixation on key features.

Copyright @ Massachusetts Institute of Technology, 1993

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of Technology.
Support for the laboratory's artificial intelligence research is provided in part by the Advanced Research Projects Agency of
the Department of Defense under Office of Naval Research contract N00014-91-J-4038. The author was also supported by
NSF contract IRI-8900267. The author can be reached via welgQai.mit.edu.

93-23965
o r I c (,7l



1 Introduction
The title of this article is, of course, deliberately provoca-
tive, in part to capture the reader's attention. but in
part also to make a point. A common assumption of
researchers working in stereo vision is that the goal of
stereo is to compute explicit 3D informnation about a
scene, in order to support activities such as navigation,
band-eye coordination and object recognition. WV'ile
there are applications in which such information can be
accurately computed, these domains require very accu-
rate camera calibration information. WVe suggest that
in many applications, it may be difficult to attain and
maintain such accurate information, and lienice we sug-
gest that it. may be worthwhile to reconsider what is re-
quired of a stereo algorithm. in light of the needs of the
task that uses stereo's output. In particular, we examine Figure 1: 'ornsweei illusion in dept It.
the role of stereo in object recognition. arguing that it
may be more effective as a means of separating objects
from background, than as a provider of 3D information
to match with object. models. To supp~ort this arguileneit trated in Figure 1. This illusion is a depth variant on the

we provide a demonstration of a stereo algorithm that standard Cornsweet illusion in brightness, and is due to

separates figure from ground through attentixe fixation Anstis et al. [2] (see also [37]). It consists of a physical

on key features, without explicitly computing actual 3D object with two coplanar regions separated by a sharp

information. discontinuity, where the regions immediately to thle sides
of the discontinuity a.- smoothly curved. These surfaces

2 Some Stereo Puzzles are textured with random dot paint., to make themn visi-
ble to the viewer. Subjects are then asked to determine

It. has been common in recent years within the computer whether the two planar regions are coplanar. or sepa-
vision community to consider the stereo vision problem rated in depth. and if it is the latter, which surface is
as consisting of three key steps [23), [27]: closer and by how much. Although physically the two

"* Identify a particular point in one image (say t,,c surfaces are in fact coplanar, subjects consistently see

left). one of the two surfaces as closer (the left sKIe in the case
"of Figure 1). The reported error is .5cm and is consistent

* Find the point, in the other (say right) image that for three different, view distances: 72. 145 and 290cmn.
is a projection of the same scene point as observed This is clearly surprising if one believes that the ab, ve
in the first image. description of the stereo process holds for biological as

" Measure the disparity (or difference in projection) well as machine solutions. In particular. if the human
between the left and right image points. Use knowl- systemn maintain-s a representation of reconstructed dis-
edge of the relative orientation of the two camera tance, and if that representation is accessible to queries,
systems, plus the disparity, to determine the actual then it is difficult to see how human observers could con-
distance to the imaged scene point.. sistently make such a niistake.

These steps are repeated for a large number of points Additional stereo puzzles are provide(] in [40]. which
leading to a 3D reconstruction of the scene, at. those the authors use to argue that depth is not computed
points, directly in humans, but is reconstructed from non-zero

There are many variations on this theme, including second differences in depth. As a consequence, they
whether to use distinctive features such as edges or cor- demonstrate that human stereo vision is blind to con-
ners as the points to match. or to simply use local stant gradients of depth. Similar observations oil the
patches of brightness values, what constraints to apply to role of disparity gradients in reconstructing depth are
the search for corresponding matches (e.g. epipolar liles, given by [44].
similar contrast, similar orientation, etc.), and whether It need not be the case that machine stereo systems
to restrict the relative orientation of the cameras (e.g. make the same "mistakes" as human observers, but the
to parallel optic axes). Nonetheless, it has been coin- existence of such an illusion for humans raises all in-
monly assumed for some time that the hard part of the teresting question about, the basic assumptions of ap-
problem is solving for the correspondence between left proaches that reconstruct distance.
and right image features. Once one knows which points Consider a second puzzle about the approach of
match, it has been assumed that measuring the dispar- matching features, then using trigonometry to convert
ity is trivial, and that solving for the distance simply into depth. As noted. for years stereo researchers have
requires using the geometry of the cameras to invert a assumed that the correspondence problem was the hard
simple trigonometric projection. paii. of the task. Once correct correspondences were

This sounds fine. but let's consider some puzzles about found, the reconstruction was a simple matter of geom-
this approach. The first puzzle is a perceptual one, illus- etry. This is true in principle. but it relies on finding



the intrinsic parameters of the camera systems and the do not have large variations in (disparity. \%e will exani-
extrinsic parameters relating the orientation of the two ine a ,modified stereo algorithm in section -1 that takes
cameras. While solutions exist for finding these parail- advant age of t his observation.S eters (e.g. [41]). such solutions appear to be numerically If one accepts that stereo is primarily for segnwnta-
unstable [4.5, 43]. If one does not perform very care- tion. not for 3D) reconstructioln, this leads t, t lie further
ful calibration of the camera platform, the result will be question of whether recognition of 31) obje't.- (-all be
very noisy reconstructed distances. done without explicit 31) input data. A numuier of re-

Of course, there are circumstances in which careful cent techniques have shown interesting possibilities along
calibration call be performed, and in these cases, ex- these lines: for example, lhe recent developmient of tilte
tremely accurate reconstructions are possible. A good linear combinations method [42] suggests that one could
example of this is automated cartographic reconstr c- use stored 21) images of a model to gcxii_.rate an hypothi-
tion from satellite imagery., where coinimer,'ial systenms esized 2D iiiage which can then he compared to the oh-
can provide maps with accuracy oil the order of a few served itiage. Again, oiie does not need to extract exacl
meters. from satellite photography [19]. On the other 31) data. It is also intriguing along these lilies to observe
hand, if the cameras are mounted on a mobile robot that that some physiological data [34. 35] may also supl)ort
is perturbed as it moves through the environnent, then the idea of tile lhuman systei solving 31) recoguiiion
it may be more difficult to attain and maintain careful from purely 21) views. Of course, it is [,o-.'.;ibhle to solve
calibration. Thus. we see that there are some sugges- the recognition prcblem by matchiing reconstructed 3D
tions that human observers do not reconstruct depth, stereo data against 3D models [27].
and some sUggetilunS thiat one needs very careful cali- To S',1,Mo•sriv w-' consider three mat:: points:
bration (which is olten hard to guarantee) in order to (1o
this. We will explore the calibration sensitivity issue in * the human stereo svstei may not directly compute
section 3. 3D depth, suggesting that humans may nol need

Given this puzzle, it is worth stepping back to ask explicit depth:

what. one needs from the output of a stereo algorithm. * small inaccuracies in measuring camera parameters
Aside from specialized tasks such as cartography, the two caii lead to large errors in computed depth, suggest-
standard general application areas are navigation and ing that we may not he able to conml)llte explicit
recognition. Interestingly, Faugeras [8] (see also [39]) has depth accurately:
recently argued that one can construct and maintain a
representation of the scene structure around a moving e the critical part of object recognition is fig-

robot, without a need for careful calibration. Moreover, ure/ground separation. which may not require ex-

* the solution involves using relative coordinate systems plicit depth information.

to represent the scene, so that there is no metrical re- W\e will use this to argue that stereo call contribute
construction of the scene, to the efficient solution of the object recognition prob-

What about object recognition? We have found it lem. without the need for accurate calibration and with-
convenient to separate the recognition problem into three out the need for explicit depth computation. In this
pieces [11]: case, the importance of eve movements or related coil-

"• Selection: Extract subsets of the data features trol strategies is increased, causing us to reexamine the
likely t.o have come from a single object, structure of stereo algorithms. Similar questions have

been by systems that use actively controlled stereo eve-"* Indexing: Look up those object models that couldhavegivn rie t onesuc selcte subet.head systems to acquire depth informiation (for examp'le.
have given rise to one such selected subset. 15,.7.92.3,3833)

"* Correspondence: Determine if there is a way of

matching model features to data features that is 3 Why Reconstruction is Too Sensitive
consistent with a legal transformation of the model
into the data. While our first point is based primnarily on earlier psy-

We have argued [11] that for many approaches to chophysical observations, the second point bears closerWe~~xmiain Letvs argue [11 that detai man appoahe prole .. tofi.e
recognition, the first stage is the crucial one. In many examina. Lts look in nore detail at the problem of

cases, it reduces the expected complexity of recognition computing distance from stereo disparity. Suppose our

from exponential to low-order polynomial, and in many two cameras have points of projection located at 1b and

cases, it is nece'ssary to keep the false positive rates under br, measured in some world coordinate system. Assume

control. If we accept that the hard part of recognition is t hat the optic axes are if and i,., and that both cameras

selection. rather than correspondence, then this has an have the sare focal leigth f (though we could easily
interesting implication for stereo. If stereo were mainly relax this to hay'v, two different focal lengths).

oriented towards solving the correspondence problem, it, In this case, we (an represent the left image plane by

is natural to expect that it needs to deliver accurate 3D
data that can be compared to 3D models. But if stereo is {vI (v. if) = (if

mainly intended to help with the selection problem, then where (,, .) represents aii inner (or (lot) product. The
one no longer needs to extract exact 3D reconstructions, principal point (or image center) is givei by
one simply needs stereo to identify data feature subsets
that are roughly in the same depth range, or equivalently er = t)r + A

2 - e• •h rif I



where we have chosen to place the image plane in front of where * is chosen as the direction of t he vector connect-
the projection point. to avoid the inversion of the coordi- ing the two centers of projection, aud where the two cam-
nate axes of the image. Since we know that this point lies eras make a symmletric (though opposite signtedj gaze
on the image plane, we can deduce the constant offset. angle 21 with the i axis, and where tlie offset of each
so that the left image plane is given by catmiera froti lie origin is the samte. Iii this caas,. silbsti-

{vj (v - b(, i) =fl, tlution and Illamiipulatloll leads to

A similar representation holds for the right intage plane. Cos, •) ('0 =I)

Now an arbitrary ;Celle point p maps. under Ierspec- 2b (f- Cos'-' ;,' + d,. sill ) (f(1 cos'- (I, sill
tive projection, to a point i)f on the left image plane, 2 sill ,(f 2 cos' -j + d,.df) - f (cos 2  - sinll) (. - ,2
given by f(p - be) where we have let

P1  -,± d, (d,.

and for convenience we write this as (If (di. j)

l) f = ef +di Note that in tIhe special case, of paralh'l optic axes (2
()). thtis reducees to)

where (d,. it) = 0. Here df is an offset vector in the 0 r

image plane fromn the principal point: (1). ) -
i,, ~~~~, x-()-b) f i d,.

dfi•* ( ((I--- bf) - ') which is exactlv what o,,e would expect. since l(, - dI is

k (p- b(, ) " simiply tile (lisl)arity at this point.

Note that we haven't specified the world coordinate For convenience, call Z = (). i). Tlis equalion t ell,
syst,emi vet, and we call now take advantage of that free- us how to compute tile deptil Z, given mneasurenments
(lorn. In particular, we choose the origin of the world for the camera p)aramteters f,b.,l atnd the two principial
coordinate system to be centered between the projection points cf,cr as well as the individual imeasuremtents of
points, so that be = -b,. = b. displacenment dr, dr (or equivalently (it and d,.).

By subtracting dr front df, we get the following rela- The question we want to consider is how accurately
tiotisilip (to we nteed to know these paranmeters? There has been

some previous analysis of stereo error in the literature.
(p - be. if) di - (p - br., ir) dr primarily focused ott the effects of pixel qualntization

f [-be + b, - (p - be. if) if + (p - br, ir) ir](.1) [43, 28. 25]. alt hough some analysis of the effects of cal,-

For the special case of the origin centered between the era parameters has also been done [45. 4-1J. lere we aret

projection points, this beconues primarily interested iii the effects of tle cantera parani-
eters.

For sake of simplicity, we will assutle tihat - is sinall.
(p - b. if de - (p + b. ,r) dr For example, if the cameras are fixated at a target I

f [-2b - (p - b, if) i + (p + b. ir) ,r] . (2) meter removed, with all interocular separation of ltcm.
then -1 ,) .05 radians, or if the fixation target is .5 meters

We can isolate components of p with respect to each off, then -1 ; .1 radians. In the second case. the small
of the two optic axes, by taking the dot product of both angle approximation will lead to alt error iii cos-' of at
sides of equation I or 2 with respect to these unit vectors, most .005 and all error in sill n, of at most .0002. Using
This gives us two linear equations (assuming that if # the small angle apl)roxilmation leads to
i.r). which we call solve to find these compotnents of p.
Adding them together yields: Z 2b `+ -f(d,. - d)

(P , if + 
Z 

= 
2b (f2 + dr d ) - f '(dr -(5)

If we rewrite this, isolating depth in terms of interocular
[(f2 + a3) (b.,i - •r) + 2f (b. 32 e - •ir)] (3) nits (2b), a,,(l image offsets in termts of focal length (or

P - e(luivalently in terms of angular arc). we get:
where z + -4-, f

0 = (dr + f,.ie 2b) 2 -, +2 J f
3ý = (df + fie, i2r) lit somle cases it is more convenient to consider this ex-

To explore how this computation of depth from stereo pression in terms of relative units, that is representing
measurements depends on the accuracy of the calibrated depth in ternis of interocular spacing, by using
parameters and the disparity measurenients. we consider z
the symmetric case of: - 2b

if = cos-iz + sinyix and to use disparities as angular arcs by using

,r = cos -ti - sin ii d , dr m
= -bi r f f -f.



It this case, we have Equations 9 and 10 are essentially the sane. 'Ihev
show a non-linear effrct, in that the relative error ill coin-

Z' J - f (7) puting depth is a function both oif lhe relative error in
21 - (d'. - d' ) + 2" d,. d'comiput ing the po,,ition of each iniagv point with, respect

By taking partial derivatives of this equation wit h re- to lhe global coordinate frame, anl more inportantly iis

spect to each of the parameters of interest (which we a function of the distance of thle otbject from the viewer.

treat as independent of one another), we arrive at thei ini umits of interocular separat ion (21). Thus, I he relat i%,

following expressions for tue relative change in coliputed error will get much worse tor iiore distant olbjects. If we

depth as a function of the relative error in imeasuring the let the pixel error in measuring position he k. then using

parameters: it standard pixel size and focal length. thlie relative error
in depth 'is

AZ AbI II
eZ 6for our camera system. To see how large this call get.

AZ Ad, 'i + Z'- 21<d' we need to understand what can coitrihiutll to . EHffects

Z frd' - d!) include:

AZ Ade + Z' + 2'd',Z' * image based localization errors

Z I + "(d. - d) * inmage based matching errors

AZ+ Z )(d. - d) - 4*d,.dfZ * registration errors between the inmage and the world

= I + -(d' - d') coordinates due to:

dZ -d'- 2Z'(I +drd:i) - principal point,
= I I1 + (d" - d',) - image orientation

Uncertainty and smoothing effects iii the edge detec-
Ifwe use standard viewing geometries (i.e. focal length tor will affect the first source of error. but typically will

much larger than individual pixel size, -, small), we call oilv cause errors omi the order of a few pixels. Since
approximate these expressions as follows: matching errors by definition must lead to incorrect

lepth reconstructions, we ignore them in our analysis.
AZ AbI The second major source of error comes from convert-

Z- (8) ing the image pixel measurements to world coordinates.
and here there are two main sources. One is that all of

AZ• AdrZ (9) our disparity measurements in the analysis above were

If I I Ifbased on the displacement of features from the principal

AZ Ad, points. This requires that we measure those principal_TZ'I (10) points accurately [21]. and this is particularly important
since in many cameras, the principal point can often be

. Z•(d, _ d')I (11) tens of pixels away from the center of the sensor array.
IZ I For example, the CCD cameras in use in one of our stereo
AZ setups have principal points displaced from the image ar-

' 2 IZ'I JA-I (12) ray center by 30 pixels in x and 1 pixel in y/ for the left
camera and 18 pixels in x and 3 pixels in y for the right

We note that related error expressions were obtained camera. Methods in the literature for locating the prin-
in [43], although the focus there was on the effects of er- cipal points [21] are reported to have residual errors of
rors in the matching of image features and the quantiza- at, most 6 pixels.
tion of image pixels on the accuracy of recovered depth. Finally, we need to know the orientation of the camera

Our concern is how uncertainty in measuring the cam- rasters with respect to the world axes. Even if we ignore
era parameters impacts the computed depth. Ideally, we the effects of gaze angle, rotation about the optic axis
would like a linear relationship, so that, for example. a (cyclotorsion) can result in an error in the disparity offset
1 percent error in computing a parameter would result with respect to the interocular baseline. Since this error
in at most a 1 percent error in depth. goes with the cosine of the rotation, we expect the effect~s

To explore this, we consider two cases: a camera sys- of such error to be small.
tem with 15mm focal length and .015mm pixels so that If we have found the principal points and the orien-
a pixel subtends an angular arc of .001 radians; and the tation of the cameras with respect to world coordinates
human visual system, where the fovea has a receptor accurately, then k will typically be on the order of a few
packing subtending approximately .00014 radians. pixels. If we have not. k can easily be on the order of

By equation 8, relative errors in computed depth due tens of pixels. To see the effect, of this on reconstructed
to mismeasurement of the baseline separation are gen- depth, Figure 2 shows plots of the percentage relative

S erally quite small. For example, a 1¶7X relative error in error in computing depth. as a function of the distance
measuring the baseline will result in a 1% relative error to the object (measured in units of interocular separa-
in the computed distance. tion), for the case of k = 1 and k = 10. For an object
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Figure 2: Vertical axis is the percentage error in comput- Figure 3: Vertical axis is the accuracy in pixel location
ing depth, horizontal axis is the distance to the object (in needed so that the relative error in depth is less than 1t',
units of interocular separation). Top graph is for errors horizontal axis is the distance to the object (in units of
in localizing image features of 10 pixels, bottom graph interocular separation).
is for 1 pixel errors.

of distance to the object.
1 meter away from our standard camera setup, k = 10 We note that errors due to gaze angle calibration
leads to 10% errors in computed depth. For the human could be a real problem. It is interesting to note that
system, these errors are reduced by a factor of 10. A the hunman system appears able to measure gaze angle
second way of seeing this is to ask what is the accuracy only up to an accuracy of roughly I degree [16] (page
on pixel location needed to keep the relative depth error 67).
less than 1%, as a function of the distance to the object.. In short, we need to be certain that we have estimated
This is shown in Figure 3. the principal points accurately, and that we have very

By equation 11, a I percent error in estimating f and accurate measurements of the gaze angles of the cam-
disparities on the order of 10 pixels, will still only lead eras. If we cannot do so, then we will suffer distortion in
to 1 percent errors in relative depth for nearby objects our computed depth. More importantly, that distortion
(Z/2b z 10), which is small. Note that as the disparities varies with actual depth, so the effect is non-linear. If we
get larger, the error increases This has the interesting are trying to recognize an object whose extent in depth
implication that if the object of interest is roughly fix- is small relative to the distance to its centroid. then the
ated (i.e. the two optic axes intersect at or near the effect of this noise sensitivity is reduced. This is because
object) then disparities for features on the objects will the effect of the error will be systematic, and Iii the
be small, and the depth error will be small, while objects case of small relative depth, this uncertainty basically
at larger disparities will have larger errors. Note that. a becomes a constant scale factor on the computed depth.
similar observation has been made by Olson [31] who On the other hand, however, if the object has notice-
shows that much of the sensitivity of depth reconstrec- able relative extent in depth (even on the order of a few
tion to camera parameters can be isolated in the compu- percent), then the uncertainty in computing depth will
tation of the depth of the fixation point, while relative skew the results, causing difficulties for most recognition
depth of other points with respect, to this fixation can be methods that compare computed 3D structure against
computed fairly accurately. stored models. Thus, the sensitivity may cause serious

All of this analysis is encouraging. Consider equation problems for recognitioni met hods, both due to the large
12, however. Here, a I degree error in estimating the errors in depth and due to the distortions with varying
gaze angle will lead to 34 percent relative depth errors depth.
for nearby objects (Z/2b ,• 10), and even a .5 degree gaze
angle error will lead to 17 percent relative depth errors. 4 Another Look at Stereo
This is graphed in more detail in Figure 4. Similarly, in
Figure 5, we plot the accuracy in gaze angle needed to Given that. it. may be difficult, to reliably compute dis-
keep the relative depth error at most 1%, as a function tance, and that distance [nay not be needed to handle

S' l I I I I5



the two main uses of stereo output, we suggest that
it is useful to reconsider the performance requirements

Retvedpt • r•or v.. Object distnc that stereo should satisfy to support tasks such as oh-* ject recognition. To handle figure/ground separation. a
stereo algorithin should:

"0.6 he able to delect proximal (in the inmage) features

that lie within sonie range of depth (i.e. find point,,

0.5 that are near one another in 31) space. even if onle
does not know exactly where in :11)),

0.4 / * be able to align nmatching distinctive features so
",hat the\* are centered in the two images, to ensure
that nearby p.arts of the corresponding object are

0. -visible in both images and can be matched,

* be able to integrate oth er visual cues about possible
trigger features to foveate and fixate.

First, we should consider whether we can use exist-
/ , i,,g stereo algorithmls (e.g. [10], [4]. [26]. [36). [1-1)) to

tackle the problem of figure/ground separation. W\e can
conveniently separate stereo processing into several coii-

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.1 ponents:

* Choice of features to match: for our discussions.
we will consider only edge based stereo matching.

Figure 4: Vertical axis is the percentage error in comput- * Constraints on the matching process.
ing depth, horizontal axis is the distance to the object * Control mechanism used to guide the mnatching
(in units of interocular separation). Graphs are for er-
rors in computing the gaze angle of 1, .5 and .25 degrees, process.
from top to bottom. Most current stereo algorithms solve the correspon-

dence problem as follows: Given any left image edge.
search the set of right image edges for a unique matrch.
The search is usually constrained by the (assumed
known) epipolar geometry, and by a set of similarity

SAccuracy l on gaze er .. o ..... constraints (e.g. edges should have similar orientation.
0.6 similar contrast. (or intensity variation), and so on), This

holds both for matching individual edge points (in which
case additional constraints such as figural continuity may

0.5 also apply) and for extended edge fragments.
The key question is what, constitutes a unique match.

and this depends on the control mechanism used by the
algorithm. For example, most of these algorithms at-
tempt to find matches over a wide range of disparity,
reflecting the fact that the viewed scenes may have oh-

0.3 jects ranging from close to the viewer (less than I meter)
out to objects at the horizon. This can easily translate
into disparity ranges on the order of several hundred pix-

0.2 els. The problem is that under these circumstances, it
may be very difficult, to guarantee uniqueness of match,

0. especially when one is only considering local attributes
0.1 of features, such as orientation and local contrast. One

solution is to incorporate local geometric information
0_0 about, nearby edges [3], [29]. But an alternative is to
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.ý consider changing the control mechanism.

The key problem is that previous stereo algorithms
had as their goal the reconstruction of t~he scene , and
hence they were designed to find as many correct,

Figure 5: Vertical axis is the accuracy in gaze angle (in matches as possible, over a wide range of disparities.
degrees) needed so that. the relative error in depth is less On the other hand, if all we are interested iti is sepa-

* than 1%, horizontal axis is the distance to the object (in rating out candidate image features that are likely to
units of interocular separation). correspond to a single object, and we are willing to al-

low edge features to participate in several such groups,



then an alternative control method is viable. li particu- if a significant fraction of each edge has an epipo-
lar, since we are interested in finding roughly contiguous lar overlap with the other edge. if the orientation
3D regions, it is attractive to envision a control niethod is roughly tile saint', if the average inlensit onl at
in which one fixates at sonite target. then searches for, least onet side of the hedge is roughly tew satile. and
matching features within some range of disparity about if thei arranigeitenit of ntighbouring ekdge- at olne of
that fixation point, collecting all such imatching features tflie endpoints is roughly t he san'.
as a candidate object, aid continues. This set ofedges iow Coll sistIlttes all hiypothlesi z d

Such an algorithm is similar in approach to soiie ear- fragient of a single object. Wc caii save iliesC
lir stereo inet hods, notably [23, 27. 31] and it bears edges, and continue itie process, looking for an-
some similarity to evidence of the human stereo system. other unique trigger feature to align i tie canieras.
particular in tile restricticn of matching disparities only Alternatively, we can pass these edge featu'es on to
over a narrow range about the fixation point (referred a passu ts edge teat u17, Oil t

to as Panunm's limit inl the perceptual literature) and te a recogition algorithi, such as Aligttniit [17. 1 j.
role of eye movements in guiding stereo [23, 27, 31]. It W\' have itiIpeinented an Initial version of this algo-
also clearly relates to work in active stereo head systems rithI, ali(l used it in conjunction with an e'ye-lhead svs-
[1, 5. 6, 71 9, 20, 30, :38. 33], especially work oii using teii, which cali pan and tilt as a unit . as well as change'
saliency of low level cues. or using motion inforniat iou the optic axes of one or both caIi eras. Al exaiild' of
to drive stereo control loops that fixate candidate target this algorithm in operation is shown iii Figures 6 11.
areas [9, 6, 5, 30. 38, 33]. (iven ttie images in Figure 6. we' extract edges (Figure,

To demor.,strate this idea, we have itnplemented the 7). Fronm this set of edges. lit' most distinctive edge
following stereo algorithm (influenced in part by earlier (measured as a combination of length and intensity con-
algorithms [3]. [29]). trast) with a unique match is isolated in Figure 8. Thiis

"enables the cameras to fixate the edge and obtain a new
SProcess both images t~o extract intensity edges. For set of images (Figure 9) and edges (Figure 10). Helative
convenience, process these edges to extract linear to this fixation, stereo matching is perfornied over a nar-
segments, using a standard split-and-merge algo- row range of disparity, isolating a set of edges likely to
rithm. This latter step is mainly for reduction Il come from a single object (Figure I11). Notice how t tie
computation and is not central to the demonstra- tripod is extracted from the originally cluttered image.
tion. with minimal additional features.

" For each linear feature segment, record the position
of the two endpoints, and the average intensity on 5 Conclusions
each side of the feature. Also record the distance
from each endpoint to other nearby features. We have suggested that stereo miay play a central role

in object recognition. but not ii the it nanner usually as-
" Find a distinctive feature in one image that has a sumed in the literature. We have suggested that stereo

unique match in the other image, as measured over ntay be most useful in sutpporting figure/ground separa-
the full range of possible disparities. To begin with, tion. and that to do so it need not compute explicit :11)
we will measure distinctiveness as a combination of information. Supporting this argument were the obser-
the length of the feature and the contrast of the vation that depth recotstruction is extremely senisitivt'
feature. The idea is that such a feature can serve to accuracy in the nmeasured camera parameters. and the
as a focal trigger featir-. Of coir-,• .•nv other c1-eCvation t.b'• tb- human stereo system iuay tot comim-
cues could serve to focus attention [22]. [)ife explicit depth.

" Rotate both cameras so that the distinct feature U;sing the idea of depth detectors tuned to a nar-
and its match are both centered in the cameras, row range aboout a fixation point ha.s beeti previously
This is a simple version of a fixation mechanism, in exploredl in the literature. primarily for obstacle avoid-
which the trigger feature is foveated and fixated in antce [15], [32]. This work considers the same general
both cameras. Note that this will in general cause idea within the context of recognition. Such alt approach
the optic axes to be noti-parallel so that epipolar opens up several other aventues fur in'icstg.,u', ... ...'
lines will no longer lie along horizontal rasters. A ample. what is the role of other visual cues in aiding tltie
simpler version just uses a pan and tilt motion of stereo matching problem. While one optioi is to aug-
the cameras to center the feature in one image, ment image features with attributes, such as texture or
while leaving the optic axes parallel. color measures. an alternative is to consider using such

cues to drive vergence eye movements, helping to align" Within a predefined range of disparity +b the cameras on trigger features, so that the local matcher
(Panum's limit) about the zero disparity position can extract image features likely to correspond to a sin-
(due to fixation), search for other features that have gle object. We intend to explore' these and related issues
a unique match. Note that uniqueness here means in the near future.
only within this range of disparity. There may be
other edges outside of this disparity range that sat.- References
isfy the matching constraints, but in this case such
matches are ignored. In our implementation, two [1] A.L. Abbott and N. Ahuja, "Surface reconstrucxtion
edges match if their lengths are roughly the same, by dynamic integration of focus, caniera vergence. antI



Figure 7: Initial test edges.

Figure 6: Initial test images.

Figure 8: Initial focal edge.



Figure 10: Fixated test edges. In this case, wei

foveated the left image edge by a paii/tilt motion of Ow'
head.

Figure 9: Fixated test images. In this case, we have
foveated the left image edge by a pan/tilt motion of the
head.

Figure 11: Matched fixated edges.
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